Aerogeneradores eólicos

Presentación de la actividad

En la antigüedad la energía eólica se utilizaba para la navegación, para moler granos o para sacar agua de los pozos. Gracias a este descubrimiento, el ser humano se benefició con la cantidad de tiempo que destinó al ocio u otras actividades, en vez de tener que realizar estos procesos manualmente.

La energía eólica es la que obtenemos a partir del viento. Nuestro país cuenta con este recurso en muchas zonas, donde hay vientos con velocidades importantes que podrían utilizarse para generar dicha energía verde.

¿Sabían que en la actualidad la energía eólica se utiliza para generar energía eléctrica?. Esto se produce gracias al uso de aerogeneradores, que son grandes molinos de entre 40 y 50 metros de altitud y con hélices de hasta 23 metros de diámetro.

Los aerogeneradores funcionan moviendo la hélice que poseen, esto convierte la energía generada en electricidad. En la parte posterior, una veleta la orienta para

conocer en qué dirección se orienta el viento. Estos "molinos del siglo XXI" se agrupan en los parques eólicos.

La energía eólica nos brinda los siguientes beneficios:

- Energía que se renueva
- Inagotable
- No contaminante
- Reduce el uso de combustibles fósiles.
- Contribuye al desarrollo sostenible

Les compartimos algunos videos sobre la temática planteada:

¿Cómo se produce la energía eólica?:

https://youtu.be/MRfBi7-xciE

¿Cómo funciona un aerogenerador?:

https://youtu.be/FHa80UNXaJw

Una familia nos cuenta que viven en un pueblo costero del sur de nuestro país, donde el viento siempre los acompaña, y es parte de su identidad. A veces la energía eléctrica se interrumpe por no contar con una infraestructura adecuada en dicho pueblo. Pensamos que algo podemos hacer para resolver esta situación energética, utilizando la energía eólica. ¿Se les ocurre como podría ser?.

Consigna del proyecto:

Les pedimos entonces si aceptan la motivación planteada, que diseñen un prototipo de aerogenerador.

Para ello tendrán que construir y diseñar una estructura con una hélice que deberán hacer girar con un motor, simulando el movimiento del viento. Tendrán que contemplar el alto de la estructura, así como el peso de la hélice.

Es importante que comiencen explorando en diversas fuentes, buscando información sobre distintos tipos de energías, especialmente las energías verdes, que los ayuden a armar su prototipo.

A partir de todo lo que investigaron tendrán que diseñar de manera original y creativa una propuesta que solucione el desafío planteado.

Objetivos de la actividad

- Lograr que los estudiantes se aproximen a cuestiones vinculadas a las energías verdes, especialmente la energía eólica.
- Identificar y comprender cómo se genera la energía eólica.
- Conocer y clasificar los diferentes tipos de energías existentes en nuestra sociedad (ciudad o pueblo).
- Que los estudiantes puedan conocer y explorar en el uso de motores
- Formular diferentes soluciones concretas a una situación problemática utilizando dispositivos robóticos, identificando las dimensiones de diseño, construcción, operación y uso.
- Trabajar colectiva y colaborativamente para la resolución de problemas,
 favoreciendo el intercambio de ideas, y comunicar de forma clara y secuenciada las estrategias de solución ante las problemáticas planteadas.

Forma de trabajo

Los estudiantes trabajarán e investigarán previamente junto a su docente sobre la temática planteada.

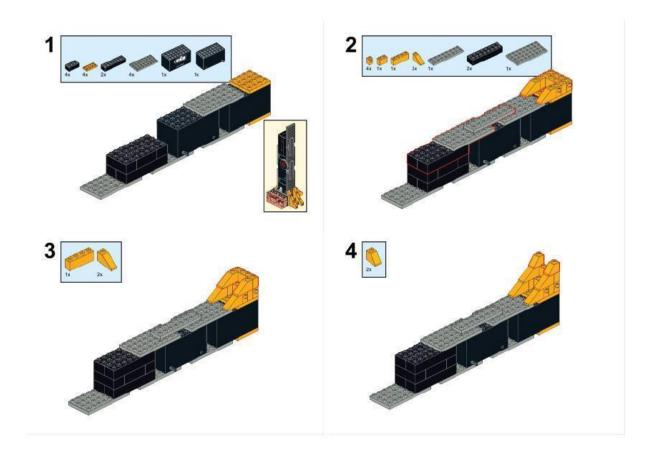
Posteriormente se organizarán en equipos de trabajo y empezarán a resolver el desafío planteado, desarrollando todo el armado y la programación del mismo.

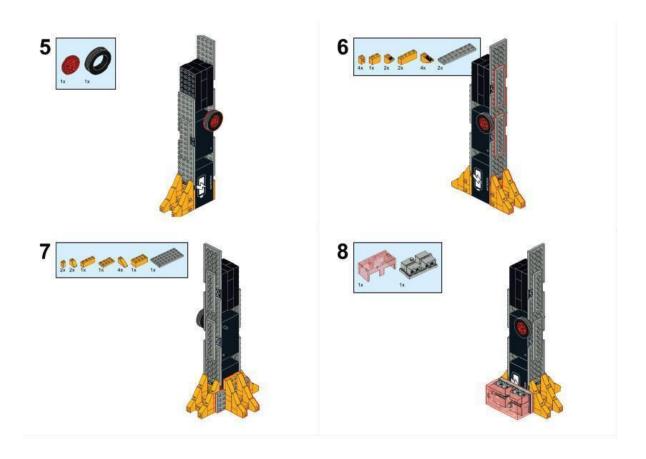
Realizarán los testeos y pruebas correspondientes, e irán solucionando colectivamente los problemas que surjan.

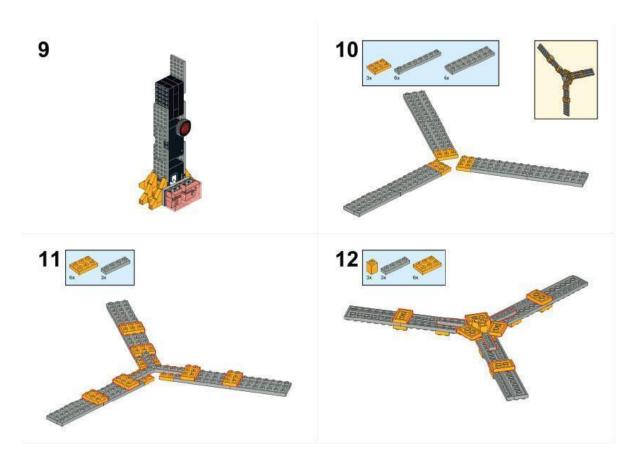
Recursos necesarios para la actividad

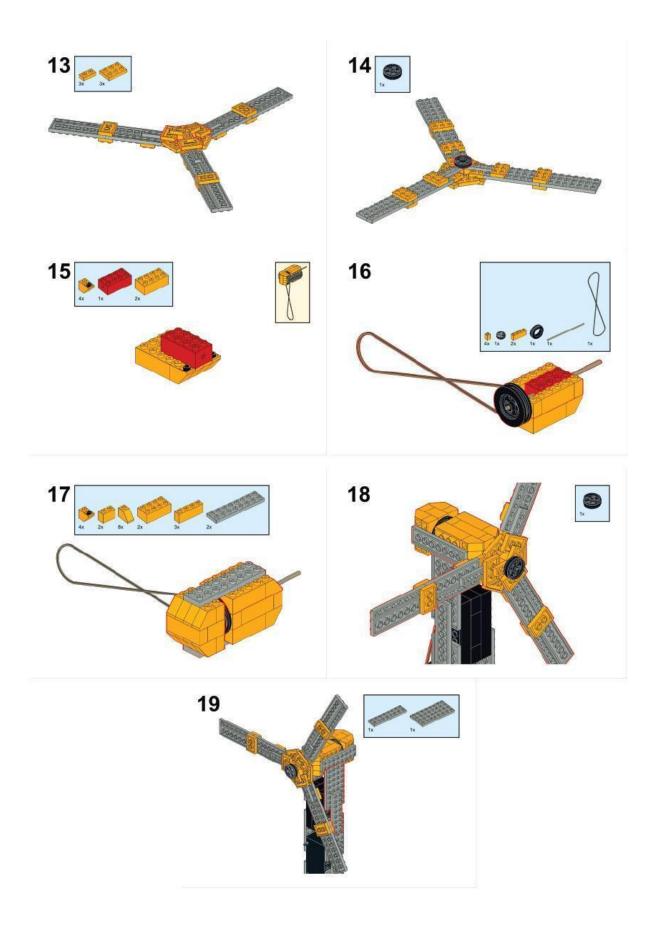
- Ladrillo inteligente R8+
- 1 Motor
- Batería recargable
- Set de piezas de robótica
- Computadoras o notebooks con el mBlock instalado (software para armar la programación del robot)

Etapas del proyecto:


Primera parte: armar el robot


- Armado del robot
- Paso a paso
- Validación funcional


Segunda parte: Programar el robot


- Cómo realizar la programación
- Validación del programa

Armar el robot

Enlace para descargar el manual en PDF:

https://misladrillos.com/descargas/tinta_fresca/manual%20molino%20eolico%20simple.pdf

Modelo terminado!

La programación del Aerogenerador

En esta actividad se deberá descargar un archivo que contiene el programa para que el Molino Eólico funcione.

Lo primero que se debe hacer es descargar el archivo que luego se abrirá desde mBlock

Enlace para descarga del "Programa para molino eólico":

https://misladrillos.com/descargas/tinta_fresca/Tinta%20Fresca-molino%20eolico%20simple.mblock

Una vez que se haya descargado el archivo simplemente se debe hacer doble click en él y se abrirá mBlock mostrando los bloques que componen el programa.

A continuación hay que cargar este programa en el ladrillo inteligente siguiendo los pasos que se detallan en el Módulo Introductorio.

Funcionamiento

Una vez descargado el programa, el molino obedece al control remoto.

Al presionar el botón "Aumentar velocidad" el molino comenzará a girar a velocidad lenta, emitiendo sonidos que simulan el nivel de generación de energía Una segunda presión del mismo botón hace que el giro aumente su velocidad, y también la frecuencia del sonido de generación de energía.

El tercer toque al botón lleva al molino a girar a su velocidad máxima, indicando, mediante sonidos, el máximo nivel de generación eléctrica.

El botón "Disminuir velocidad" trabaja de manera similar. La velocidad va disminuyendo con los sucesivos toques en el botón, hasta llegar a detenerse.

El botón "Detener" interrumpe el giro del molino en cualquier momento.

El funcionamiento puede verse en el siguiente video.

https://youtu.be/c8eVb9wa8XM

Evaluación de la actividad

Verificación y testeo en respuesta a los objetivos de la actividad

Nos proponemos que en función de algunas premisas a considerar, dejando de pensar en correcto e incorrecto, comenzar a pensar en la solución de situaciones problema. Para ello les compartimos una tabla para que de forma colectiva y con la ayuda de los docentes puedan marcar los ítems y opciones que consideren y correspondan:

	Nivel excelente	Nivel optimo	Nivel Bueno	Nivel insuficiente
¿Cuál es el	Comprende la	Comprende la	Comprende el	No comprende
problema que se	problemática	problemática	contexto, pero no la	la problemática
quiere solucionar?	planteada y logra	planteada.		planteada, ni

Interiorización del	contextualizarla		problemática a	logra
problema	correctamente		resolver	contextualizarla
				correctamente
¿pueden	Pueden articular	Logran	Solo algunos	No pueden
mostrarnos cómo	sistemática y	articular	integrantes logran	explicar lo
funciona?	fluidamente todo	sistemáticame	explicar cómo	realizado
Explicaciones y	lo realizado de	nte lo	funciona el producto,	individual o
demostraciones.	manera individual	realizado.	pero no de forma	colectivamente.
	y colectiva.		colectiva.	
¿Qué hacen	Comprenden	Comprenden	Comprenden	No comprenden
determinadas	conceptual e	conceptual e	instrumentalmente	ni conceptual ni
piezas?	instrumentalment	instrumentalm	algunos de los	instrumentalme
Focalizar sobre	e todos los	ente algunos	procesos y funciones	nte los procesos
conceptos o	procesos y	de los		y funciones.
aplicaciones	funciones	procesos y		
especiales.		funciones		
¿Cuál fue la parte	Logran	Logran	Logran concentrarse,	No logran
fácil /difícil de	concentrarse y su	concentrarse,	pero no se esfuerzan.	concentrarse ni
hacer?	esfuerzo es	pero el		esforzarse.
Dimensionar el	sistemático	esfuerzo es		
esfuerzo y la		regular		
concentración.				
Promoción del	Exploran la	Son creativos,	Cumplen el objetivo,	No logran
pensamiento	creatividad y la	pero les cuesta	pero son pocos	generar un
creativo.	retroalimentación	el intercambio	creativos.	producto
	activa.	colectivo para		creativo.
		mejorar.		
¿Cuántos	Son capaces de	Son capaces	Son capaces de	No son
inconvenientes	superar	de superar	superar pequeños	capaces de
tuvieron antes de	pequeños retos a	algunos retos	retos a través de la	superar
que funcionara?	través de la	a través de la	robótica y la	pequeños retos
Intentar que el	robótica y la	robótica y la	programación.	a través de la

equipo de	programación.	programación.	Observando y	robótica y la
estudiantes pueda	Observando,	Observando y	analizando, aunque	programación.
internalizar el	analizando y	analizando,	les cuesta reflexionar	
proceso hasta	reflexionando	aunque les	sobre sus propios	
llegar a su	sobre sus propios	cuesta	errores.	
funcionamiento.	errores.	reflexionar		
		sobre sus		
		propios		
		errores.		
¿Qué es lo	Muestra interés	Muestra	Muestra interés por el	No muestra
bueno/malo de la	por el	interés por el	funcionamiento de los	especial interés
construcción	funcionamiento	funcionamiento	objetos.	por el
realizada?. Que el	de los objetos.	de los objetos.		funcionamiento
grupo de	Investiga y	Investiga e		de las objetos ,
estudiantes pueda	construye con los	intenta		ni por
trabajar sobre sus	materiales	construir con		experimentar y
propias	propuestos un	los materiales		descubrir
debilidades y	mecanismo para	propuestos un		nuevas
fortalezas.	solucionar un	mecanismo		soluciones.
	problema.	para soluciona		
		r un problema		
Estimulo del trabajo	Aceptan, valoran	Aceptan y	Aceptan las	No aceptan las
colaborativo	y animan a sus	valoran las	aportaciones de sus	aportaciones de
	compañeros/as a	aportaciones	compañeros/as.	sus
	realizar	de sus		compañeros/as.
	aportaciones al	compañeros/a		
	grupo.	s.		

Para evaluar la finalización del proyecto se tiene en cuenta: la responsabilidad, compromiso con el trabajo grupal, participación, presentación de los robots, folletos, láminas de divulgación de lo trabajado en clase y en el aula, etc.

Preguntas o disparadores de reflexión

Se sugieren los siguientes disparadores de reflexión:

Interiorización del problema

¿Cuál es el problema que se quiere solucionar?

Explicaciones y demostraciones.

¿puede mostrarnos cómo funciona?

Focalizar sobre conceptos o aplicaciones especiales.

¿Qué hace esta pieza?

Conocer el esfuerzo la concentración.

¿Cuál fue la parte fácil /difícil de hacer?

Promover el pensamiento creativo.

¿Cuántos inconvenientes tuvo antes de que funcionara? Intentar que el equipo de alumnos pueda internalizar el proceso hasta llegar a su funcionamiento.

Evaluación razonable e imparcial.

¿Qué es lo bueno/malo de la construcción realizada?. Que el grupo de alumnos pueda trabajar sobre sus propias debilidades y fortalezas.

¿Qué aprendieron y cómo lo hicieron?

En esta actividad los estudiantes se aproximarán a cuestiones vinculadas a la ciencia y a las características de distintas energías, especialmente la energía eólica. En ese sentido trabajarán con el uso de motores, que simulen el efecto del viento. Ante la problemática compartida, deberán plantear y diseñar algunos prediseños de

Siempre deberán trabajar colectiva y colaborativamente para la resolución de problemas, favoreciendo el intercambio de ideas.

solución, que testearán con sus compañeros, modificarán, etc.

Desafío adicional

Es importante que tengamos presente la importancia de esta temática, pues en los años recientes el desarrollo de la ciencia y la tecnología ha estado relacionado a cómo generar energías verdes y al mismo tiempo dispositivos que aprovechen mejor la energía disponible en cada zona.

Los estudiantes podrían investigar en pequeños grupos en diversas fuentes, sobre la energía eólica y su vínculo con la energía eléctrica, partiendo desde el conocimiento que este tipo de energía es más conocida y consumida mayoritariamente, la cual puede utilizarse, por ejemplo, para el funcionamiento de diversas máquinas en la industria. Por ejemplo, encender una computadora, iluminar nuestro hogar o mantener los alimentos en nuestra heladera son acciones que podemos realizar gracias al uso de energía eléctrica.

En la actualidad es la energía más empleada por el ser humano en su rutina diaria, tanto social como laboral. Y de allí se desprende la importancia de vincularla con la energía eólica.

Es importante que los estudiantes reconozcan diversas fuentes de energías, que pueden ser renovables o no. En el grupo de las renovables se encuentran las centrales hidráulicas (que hacen uso de la fuerza mecánica del agua), eólicas (viento), solares (sol) y de biomasa (quema de compuestos orgánicos de la naturaleza como combustible). Además, cada una de estas fuentes se puede regenerar de manera natural o artificial.

También es interesante destacar que una de las energías más importantes y necesarias es la energía eólica, proveniente del viento, gracias a la energía cinética generada por el efecto de las corrientes de aire. Si bien está todavía en una fase de desarrollo incipiente, tiene una gran potencialidad a futuro.

Como desafío complementario les planteamos que piensen cómo hacer para que el aerogenerador se encienda a partir de que los estudiantes se aproximen y soplen las aspas. Para ello sugerimos incorporar el uso de un sensor de proximidad.